Cooperative Suction by Vertical Capillary Array Pump for Controlling Flow Profiles of Microfluidic Sensor Chips

نویسندگان

  • Tsutomu Horiuchi
  • Katsuyoshi Hayashi
  • Michiko Seyama
  • Suzuyo Inoue
  • Emi Tamechika
چکیده

A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-demand Control of Microfluidic Flow via Solenoid Microvalve Suction

A simple, low-cost and on-demand microfluidic controlling platform was developed based on a capillary-tuned solenoid microvalve suction effect without any outer pressure source. The suction effect was employed as a stable driving force for manipulating micro-fluid by connecting a piece of capillary tubing between the microvalve and the chip. The suction volume could be controlled from microlite...

متن کامل

On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction.

A simple, low-cost and on-demand microfluidic flow controlling platform was developed based on a unique capillary-tuned solenoid microvalve suction effect without any outer pressure source. The suction effect was innovatively employed as a stable and controllable driving force for the manipulation of the microfluidic system by connecting a piece of capillary between the microvalve and the micro...

متن کامل

Unsteady Heat and Mass Transfer Near the Stagnation-point on a Vertical Permeable Surface: a Comprehensive Report of Dual Solutions

In this paper, the problem of unsteady mixed convection boundary layer flow of a viscous incompressible fluid near the stagnation-point on a vertical permeable plate with both cases of prescribed wall temperature and prescribed wall heat flux is investigated numerically. Here, both assisting and opposing buoyancy forces are considered and studied. The non-linear coupled partial differential equ...

متن کامل

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends.

This review surveys the advances of microvalves, micropumps, and micromixers within PCR microfluidic chips over the past ten years. First, the types of microvalves in PCR chips are discussed, including active and passive microvalves. The active microvalves are subdivided into mechanical (thermopneumatic and shape memory alloy), non-mechanical (hydrogel, sol-gel, paraffin, and ice), and external...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012